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Abstract

We determine the value of health and longevity improvements for retirees in a

calibrated life-cycle model with stochastic health risk and access to a limited menu

of retirement products. In such a setting, consumers optimally annuitize only a frac-

tion of their wealth and adjust their consumption choices to their health trajectory.

These two aspects substantially affect their valuation of improvements to health and

longevity. First, the ability to adjust consumption mitigates the adverse consequences

of a health shock to a certain extent. Moreover, lower annuity holdings decrease the

value of mortality reductions at very old ages, as consumers tend to spend down

much of their non-annuitized wealth before then—which is especially the case for

consumers with worse health. In combination, these aspects substantially reduce the

value consumers place on aggregate health and longevity improvements, with our es-

timates undercutting estimates from the literature by 40% or more. We also document

the complementarity of annuity income, e.g. from social security, and investments in

health and longevity.
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1 Introduction

This paper develops a life-cycle framework to study optimal consumption choices among

retirees in the presence of stochastic health risk and a limited menu of retirement prod-

ucts. We calibrate the model based on an established economic-demographic microsim-

ulation framework for elderly Americans, the Future Elderly Model.1 We then use the

model to estimate the aggregate value of health and longevity improvements. Our esti-

mates for the value of improvements associated with a reduction in cancer for the retired

population are at least 40% lower than estimates based on the prevailing method from

the literature, which assumes deterministic health and complete annuitization. We show

that this reduction is a result of three related effects: (i) Due to the incompleteness of

annuity markets, consumers only hold a fraction of their wealth in annuities, leading to

decreasing optimal consumption patterns—which in turn reduce the value of health and

longevity improvements in old ages. (ii) In a setting with stochastic health, individu-

als can adjust their consumption decisions following negative health shocks, tempering

the impact of health shocks on lifetime utility and therefore the willingness to pay to

avoid them. And, (iii), individuals with poorer health conditions that benefit most from

health improvements own fewer assets upon retirement, so that their willingness-to-pay

is lower. We also investigate the relationship of annuity income, e.g. from social security,

and investments in health and longevity, documenting that they are strong complements.

The American health-care sector is massive, with health care expenditures accounting

for roughly 20% of U.S. gross domestic product and more than 25% of government spend-

ing relating to health care (Nunn et al., 2020). Public and private organizations invest

hundreds of billions US dollars in health research and medical technologies (Research-

America, 2022; Webster, 2023). Given these magnitudes and also for an appropriate allo-

cation of public resources, it is important to estimate the value of potential advancements

in health and longevity. In their seminal contribution, Murphy and Topel (2006) take a

“first step” toward evaluating the social returns of medical Research and Development

(R&D) by estimating the value of health and life improvements in an economic frame-

work, which suggests that returns to historical and potential future expenditures may be

quite large. For instance, they estimate that a 1% reduction in cancer mortality would be

worth about $500 billion, substantiating large public investments in a possible “war on

cancer.”

We revisit the Murphy and Topel (2006) analysis by extending their framework in two

1The FEM uses the Health and Retirement Study (HRS) as a host dataset and draws on a variety of other
data sources to complement the HRS data. It has been used in more than 55 peer-reviewed manuscripts
that explore a range of policy questions, see https://healthpolicy.usc.edu/future-elderly-model.
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important dimensions. First, we introduce stochastic health to our model framework,

i.e., people tend to fall sick before dying of a chronic condition such as cancer or heart

disease, and adjust their consumption choices accordingly. As a consequence, there is

substantial variation in consumers’ health and wealth trajectories, in contrast to the single

deterministic consumption and wealth path in Murphy and Topel (2006). Second, we

constrain the menu of retirement products (general life annuities). This is more relevant

in our stochastic setting, because a complete market as in Murphy and Topel (2006) would

require an unrealistically broad set of retirement products, given the rich set of possible

trajectories and difficulties in defining and verifying health states. As a consequence,

individuals will only annuitize a fraction of their wealth, especially if annuities contain

a loading and if there are correlated medical costs (Davidoff et al., 2005; Reichling and

Smetters, 2015).

These innovations complicate the solution of consumer’s optimization problem and

the derivation of the value of a marginal improvement in health or longevity. We in-

tegrate ideas from Leung (1994) and Parpas and Webster (2013) to derive a closed-form

expression for a consumer’s optimal consumption path, under certain regularity assump-

tions that imply regularity of the possible consumption paths. The solution entails “kink

points” in the age-consumption profiles, after which the consumer solely relies on annu-

ity income to finance future consumption. We present a numerical algorithm for solving

for these kink points, and, thus, for optimal consumption paths. Unlike conventional

approaches to solving general stochastic optimal consumption problems, our algorithm

allows for an iterative solution health-state by health-state. For the derivation of the con-

sumer’s value of a marginal health or mortality improvement, we extend the ideas from

Bauer et al. (2023) to allow for life-contingent annuity income.

For the calibration of the model, we rely on the FEM, a widely published micro-

simulation model that perfectly fits our setting. The FEM generates transition probabil-

ities for the stochastic evolution of health states, which are defined via combinations of

chronic conditions and impairments to activities of daily living (ADLs), and it provides

corresponding mortality, medical spending, and quality of life profiles. The FEM has

been used by many researchers to study policy questions that relate to elderly health and

medical spending (e.g., Goldman et al., 2010, 2013; Reif et al., 2021, among many oth-

ers). We rely on a version of the model with five health states, where state 1 corresponds

to no chronic diseases or impairments, and state 5 corresponds to multiple chronic condi-

tions and multiple impairments. Individuals in different health states face very different

longevity prospects. For instance, the life expectancy for a 65-year-old (75-year-old) in

health state 1 is almost 20 years (14 years), while a 65-year-old (75-year-old) in health
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state 5 is only expected to live for a little over 9 years (6 years). We rely on relevant

literature to calibrate our preference and financial market parameters.

Optimal consumption paths based on the model are multi-faceted, due to the variation

in underlying health and wealth trajectories. Under out-of-pocket medical spending from

the FEM and realistic loadings on private-market annuities, consumers only purchase a

limited amount of (flat) immediate annuities at retirement, breaking the full annuitiza-

tion result from Yaari (1965) and in line with Reichling and Smetters (2015).2 We also

show that the willingness-to-pay for marginal improvements to health and longevity, and

particularly the value of statistical life (VSL), significantly increases in annuity income for

relatively low annuitization levels, illustrating the complimentarity of public health and

pension programs.

For analyzing the value of improvements to health and longevity, in addition to our

baseline cohort, via the FEM we obtain population transition and mortality rates after a

hypothetical intervention against cancer. In this hypothetical population, life expectancy

at age 65 (75) increases by about 1.6% (3%) for individuals in the healthy state 1 and by

5.1% (11.8%) for impaired individuals in the least healthy state 5. We derive the value

of this health intervention by integrating the marginal values over the 2010 U.S. popula-

tion. Here, we determine the value based on two approaches. We determine the aggregate

willingness-to-pay, which is affected by the marginal value placed on the intervention as

well as the marginal utility of consumption in a given age/health-state/wealth combina-

tion. And we determine the aggregate marginal value, which we normalize by a common

marginal utility of a representative consumer.

We first derive the value for this intervention using the Murphy and Topel (2006) anal-

ysis that assumes deterministic health and full annuitization, which amounts to roughly

USD 1.2 trillion. This magnitude is in line with the results in Murphy and Topel (2006,

Table 8), although the figures are not perfectly comparable, because of the difference in

intervention and the fact that they consider the entire population, whereas we limit our

analyses to the elderly. We then determine the value of the intervention using our model

setting, which accounts for: (i) a limited menu in retirement products (fixed annuity) re-

sulting in optimal partial annuitization; (ii) stochastic health; and (iii) differences in con-

sumer wealth levels by health-state. We obtain an aggregate willingness-to-pay of about

0.5 trillion—which considers differences in marginal utilities of consumption—and an

aggregate marginal value of about 0.7 trillion—which uses the same marginal utility of

2There are other aspects that limit annuity take-up that are not in our model, such as bequest motives
(Lockwood, 2012). Altogether, these factors can explain existing low annuitization levels, as other authors
have pointed out (Inkmann et al., 2011, e.g.).
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consumption as in the deterministic setting. Hence, the estimates from the stochastic

model are substantially lower—55% and 40%, respectively—though they are still sub-

stantive. We show that all factors (i)-(iii) contribute to this decrease, and at least for the

aggregate willingness-to-pay the effect stemming from all these factors is roughly on-par.

We conclude the paper by discussing potential consequences of our findings.

The paper is structured as follows. Section 2 formalizes the model, derives the solu-

tion for consumers’ optimal consumption paths, and determines the expressions for the

value of health and longevity improvements. Section 3 presents an algorithm that im-

plements the theoretical solution for optimal consumption paths. Section 4 introduces

the data and calibration used in our quantitative analysis. Section 5 presents the re-

sults from our quantitative analysis. We first illustrate optimal consumption and annuity

choice. We then discuss the relationship of annuity income and consumer valuations

of improvements to health and longevity. And, finally, we show that incomplete mar-

kets and stochastic health risks substantially reduce the aggregate value of health and

longevity improvements. Section 6 concludes.

2 Model

We introduce a setting where individuals face incomplete insurance markets and stochas-

tic health risks such as illness and death. We aim to quantify how people value medical

advances that improve their well-being and extend their lifetimes. Section 2.1 outlines

our life-cycle model and derives a closed-form solution for the optimal consumption

path. Section 2.2 derives a consumer’s marginal value of improvements in health and

longevity and, particularly, VSL as a special case. Section 2.3 explores how these marginal

values can be used to assess the aggregate value of interventions that improve health and

longevity.

2.1 Stochastic Health and Incomplete Retirement Markets

We follow Bauer et al. (2023) and model well-being and stochastic health risk via a

continuous-time Markov chain with a finite state space. Within this framework, each

distinct state corresponds to specific health conditions. Individuals are at risk of expe-

riencing health shocks, which can induce changes in their health conditions modeled as

transitions to different health states. Let Yt denote the health state of an individual at

time t with values in the state space S = {1,2, · · · ,n,n+ 1}. We assume that the severity of

health conditions progresses as the states increase. Specifically, state 1 represents perfect
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health, state n denotes the most adverse health conditions, and state n+ 1 corresponds to

the absorbing state of death. For analytical convenience, we further assume that individ-

uals can transition only to higher-order states.3

Let λij(t) be the instantaneous transition rate, or transition intensity, from state i to

state j at time t, and let µi(t) be the instantaneous mortality rate in state i at time t, i.e.,

µi(t) = λi,n+1(t). Then the probability of an individual in health state i surviving for t

years without transitioning to any other states is:

S̃(t, i) = exp
{
−
∫ t

0
µi(s)ds

}
exp

−
∫ t

0

∑
j>i,j,n+1

λij(s)ds

 .
In this setting, a complete retirement market would require a very broad set of securi-

ties, since payments at a given date may depend on the entire health history. Offering such

securities would require a firm and uniform definition of health states, as well as a device

for state verification, which is unrealistic. Therefore, in line with real-world retirement

markets, we substantially limit the available retirement securities. More specifically, bor-

rowing an approach from Reichling and Smetters (2015), in addition to a riskless savings

vehicle, we assume the consumer has an option at time zero to purchase a flat lifetime

annuity that pays out āY0
≥ 0 in all health states and has a price markup of ξ ≥ 0. The

consumer cannot finance the purchase of the annuity using future earnings or sell their

annuity after the purchase at time zero.

The net present value of the lifetime annuity generally will change following a transi-

tion to a new health state, because a fixed payout is worth more to a person with higher

life expectancy. We define the value of a one-dollar annuity at time t in state i as:

a(t, i) = E
[∫ T

t
e−r(s−t)exp

{
−
∫ s

t
µ(u)du

}
ds

∣∣∣∣Yt = i

]
,

where r is the (market) riskless interest rate.

Let τ = inf{t ≥ 0 : Yt = n + 1} be a random time that represents time of death for an

individual. Let W (t) and C(t) be the wealth and consumption at time t for an individ-

ual, and let qi(t), mi(t), and ri(t) be the quality of life, income, and (individual) rate of

interest at time t,4 which we assume are exogenous and solely depend on state Yt = i,

respectively. Denote the utility from consumption expenditure C(t) with quality of life

3This, generally, does not mean that people cannot recover from illness. In principle, our model can
accommodate transitions from sick to healthy states by introducing states that correspond to recovery.

4We differentiate between the market and the individual interest rate to potentially accommodate
health-state specific costs (see Bauer et al., 2023).
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qi(t) by u(C(t),qi(t)). Let ρ be the rate of time preference. Moreover, suppose that utility is

time separable and exponentially discounted. We assume throughout the paper that in-

dividuals are risk averse and the utility function u(C(t),qi(t)) is twice-differentiable. That

is, u(c,q) ∈ C2×2, uc > 0, and ucc < 0. We further assume that uc(·,q) diverges to positive

infinity as consumption approaches zero for all q, so that optimal consumption is always

positive.

Following Yaari (1965) and Leung (1994), we abstract from bequest motives and nor-

malize the utility of death to 0 (see also Rosen (1988) for the importance of this assump-

tion). The consumer’s optimization problem is:

V (0,W0,Y0) = max
C(t),āY0

Eτ

[
E
[∫ τ

0
e−ρtu(C(t),qYt (t))dt

∣∣∣∣Y0,W0

]]
(1)

subject to:

W (0) = W0 − (1 + ξ)aY0
a(0,Y0),

W (t) ≥ 0 ∀ t,
∂W (t)
∂t

= rYt (t)W (t)−C(t) +mYt (t) + āY0
,

where W0 and Y0 are initial wealth and state, respectively.

Let T be the maximum possible lifetime. Denote St(s) as the probability of an individ-

ual surviving s years at time t. By integrating over the possible time of death, it follows

that the optimal value function at time t given health state Yt and initial wealth W (t) is:

V (t,W (t),Yt, ā) = max
C(t+s),s≥0

E
[∫ T−t

0
St(s)e

−ρsu(C(t + s),qYs(t + s))ds
∣∣∣∣Yt,W (t)

]
. (2)

Parpas and Webster (2013) show that a stochastic optimization problem of the form

(2) in a Markov chain setting with a finite number of states can be reformulated as a

deterministic problem by taking the value function in higher states, V (t,w, j,a), j > i, as

exogenous. The intuition is that one can solve the problem state by state, starting with

the highest state. In particular, applying their result, the optimization problem (1) can be

alternatively written as:

V (0,Wi(0), i,a) = max
Ci(t)

∫ T

0
S̃0(t, i)e−ρt

(
u(Ci(t),qi(t)) +

∑
j>i

λij(t)V (t,Wi(t), a, j)
)
dt (3)
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subject to:

Wi(0) = W0 − (1 + ξ)aa(0, i),

Wi(t) ≥ 0,

∂Wi(t)
∂t

= ri(t)Wi(t)−Ci(t) +mi(t) + a,

where Wi(t) and Ci(t) denote wealth and consumption in the (deterministic) path where

the consumer stays in state i throughout her lifetime. The annuity level a is a parameter

that may (or may not) be optimized once the optimal consumption problem is solved.

Given that V and its partial derivatives are continuous, we can show that V (t,Wi(t), a, i)

corresponding to Equation (3) satisfies the following Hamiltonian-Jacobi-Bellman (HJB)

system of equations (see Bauer et al., 2023, Lemma 1):

ρV (t,Wi(t), i) =max
Ci(t)

u(Ci(t),qi(t)) +
∂V (t,Wi(t), a, i)

∂Wi(t)
[rWi(t)−Ci(t) +mi(t) + a]

+
∂V (t,Wi(t), a, i)

∂t
+
∑
j>i

λij(t)[V (t,Wi(t), a, j)−V (t,Wi(t), a, i)]

, i = 1, · · · ,n,

(4)

where V (t,Wi(t), a, i) denotes the value function of the deterministic optimization prob-

lem (Bertsekas, 2005, Proposition 3.2.1).5

The key advantage of the reformulation as a deterministic problem is that we can

apply the standard Pontryagin’s maximum principle for the solution of the problem. In

particular, the present value Hamiltonian corresponding to the optimization problem (3)

takes the following form:

H (Wi(t),Ci(t),pi(t),ηi(t)) = e−ρt S̃(t, i)

u(Ci(t),qi(t)) +
∑
j>i

λij(t)V (t,Wi(t), a, j)


+ pi(t) [ri(t)Wi(t)−Ci(t) +mi(t) + ā] + ηi(t)Wi(t), i = 1, · · · ,n (5)

where ηi(t) is a multiplier for the non-borrowing constraint Wi(t) ≥ 0 and pi(t) is the

costate variable.

Lemma 1. The first order conditions corresponding to Equation (5) are (Hartl, 1984):

5The intuition behind the result in Parpas and Webster (2013) is that this equation is also results as the
HJB of the stochastic optimal control problem (2).
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(i) ∂H
∂Ci(t))

= e−ρtS̃(t, i)∂u(Ci(t),qi(t))
∂Ci(t)

− pi(t) = 0,

(ii) ∂H
∂Wi(t)

= −p′i(t) = ri(t)pi(t) + ηi(t) + e−ρtS̃(t, i)
∑

j>i λij(t)
∂

∂Wi(t)
V (t,Wi(t), a, j),

(iii) ηi(t) ≥ 0, ηi(t)Wi(t) = 0,

(iv) pi(T ) = p+ q,

(v) p ≥ 0, pWi(T ) = 0, q unrestricted in sign.

Proof. See Appendix A. ■

Incomplete annuity markets and life-cycle income complicate the analysis by intro-

ducing the possibility of multiple sets of non-interior solutions within and across states.

(See the right panel in Figure 6 for an example.) For convenience of exposition, we fo-

cus on the case where future income is nondecreasing over time and the growth rate of

consumption is weakly declining, as illustrated by the left panel in Figure 6. Prior empir-

ical work suggests this case is a reasonable description for the typical consumer nearing

retirement.6 We do not take a stance on the reason underlying the (weakly) negative

growth rate in consumption, but we note that it arises in our model under a wide variety

of typical parameterizations.

Since we assume quality of life is exogenous, we write the utility function u(Ci(t),qi(t))

as u(Ci(t)). Our assumptions on the utility function imply that the marginal utility of

consumption is continuous and strictly monotonic. It follows that the inverse of marginal

utility of consumption exists, which we denote as u−1
c (·). We obtain:

Proposition 2. Suppose that annuity markets are incomplete as described above, consumption
growth is weakly declining ( ċici ≤ 0 ∀i), and that income, mi(t), is nondecreasing in t. For any
risk-averse individual, the optimal consumption path in state i then is:

C∗i (t) = u−1
c

eρt 1
S̃(t, i)

exp
{
−ρT ∗i +

∫ T ∗i

t
ri(s)ds

}
S̃(T ∗i , i)uc(mi(T

∗
i ) + ā)

+ e−
∫ t
0 ri(s)ds

∫ T ∗i

t
exp

{
−ρs+

∫ s

0
ri(u)du

}
S̃(s, i)

∑
j>i

λij(s)
∂

∂Wi(s)
V (s,Wi(s), a, j)ds

, t ∈ (0,T ∗i )

(6)

6A typical consumption profile is constrained by low income at early ages, increasing during middle
ages when income is high, and then declines during retirement until consumption equals the consumer’s
pension. This inverted U-shape for the age profile of consumption has been widely documented across
different countries and goods (Carroll and Summers, 1991; Banks et al., 1998; Fernandez-Villaverde and
Krueger, 2007).
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where T ∗i ∈ (0,T ) is the greatest lower bound that satisfies Wi(t) = 0 ∀ t ∈ [T ∗,T ]. For t ≥ T ∗i ,

the optimal consumption expenditure equals income, i.e., C∗i (t) = mi(t) + ā ∀ t ≥ T ∗i .

Proof. See Appendix A. ■

2.2 Value of Health and Longevity

To estimate the value of health and longevity, we follow Rosen (1988). Let ε be a marginal

reduction, e.g. due to a medical advance, that affects both transition and mortality rates.

Let δij(t) be a perturbation on the transition rates λij(t), 0 ≤ t ≤ T , which characterizes

the medical advance. We consider a consumer whose longevity prospects are subject to a

ε-perturbation in the direction of δij(t). The sojourn probability in state i is then (Bauer

et al., 2023):

S̃ε(i, t) = exp

−
∫ t

0

∑
j>i

(
λij(s)− εδij(s)

)
ds

 , where ε > 0. (7)

We extend the analysis in Bauer et al. (2023) to derive the marginal value of the ε-

perturbation:

Proposition 3. The marginal utility of life extension in state i is given by:

∂V
∂ε

∣∣∣∣∣
ε=0

=
∫ T

t0

e−ρtS̃(i, t)



∫ t

t0

∑
j>i

δij(s)ds


u(ci(t),qi(t)) +

∑
j>i

λij(t)V (t,Wi(t), ā, j)

−∑
j>i

δij(t)V (t,Wi(t), ā, j)

dt
− ∂V
∂Wi(0)

(1 + ξ)ā
∫ T

t0

e−rtS̃(i, t)



∫ t

t0

∑
j>i

δij(s)ds


1 +

∑
j>i

λij(t)a(t, j)

−∑
j>i

δij(t)a(t, j)

dt,
(8)

Proof. See Appendix A. ■

Consider a special case where only the mortality rate in state i, λi,n+1(t) is perturbed

and it is perturbed at time t = 0. The perturbations δij(t) = 0 ∀j < n + 1 and δi,n+1(t)

is equal to the Dirac delta function (Rosen, 1988). Then, dividing equation (8) by the

marginal utility of consumption yields the so-called value of statistical life (VSL) (Murphy

and Topel, 2006):

Corollary 4. VSL in state i at time 0 is equal to:

V SL(i) =
V (0,Wi(0), a, i)
uc(ci(0),qi(0))

− (1 + ξ)a a(0, i) (9)
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The second term in equation (9)—sometimes referred to as “net savings”—represents

the marginal cost to the annuity pool from saving a life and arises because the price of an

annuity is linked to survival (Murphy and Topel, 2006).7 VSL under incomplete markets

captures elements of both the uninsured and fully insured cases. When annuities are

absent (a = 0), equation (9) simplifies to the uninsured case where VSL equals the first

term in equation (9), which was studied in Bauer et al. (2023). Similarly, full annuitization

is optimal when ξ = 0, r = ρ, and quality of life and future income are constant, in which

case equation (9) simplifies to the complete markets case given by:8

V SL =
V (0,W i(0), i)
uc(Ci(0),qi(0))

−W0,

which is the expression in Murphy and Topel (2006).

2.3 Aggregate Value of a Health Intervention

To study the aggregate value from a health intervention resulting from an investment in

medical technologies and health research, we look at two measures: (i) aggregate social

surplus, or the society’s total willingness to pay for health and longevity improvements;

and, (ii), aggregate utility with equal weights for all individuals. Aggregate surplus (i)

is frequently used by economists when the goal is to decide how to allocate resources

across different people. For example, how much federal fund should be invested in health

research that focuses on less complex conditions among the young where people are more

likely to cure versus how much should be invested in medical trials that treat prevalent

conditions among the elderly. However, as explained in Bauer et al. (2023, Section 2.4),

referencing foundational studies in welfare economics (Harsanyi, 1955; Fleurbaey, 2010),

there are disadvantages to either measure, with tradeoffs with regards to efficiency vs.

equity when using one over the other. Here, we consider both measures.
For aggregate surplus (i), we aggregate individual willingness to pay. By equation (8),

marginal value of life extension of an intervention characterized by the perturbation δij

7The net savings term in the VSL presented above arises only because those expressions are evaluated at
time t = 0, when the annuity is purchased. The term disappears when evaluating VSL at t > 0—or, equiv-
alently, in a setting with life-cycle income but no opportunity to purchase an annuity—because survival
changes occurring after the purchase of the annuity do not affect its price. Philipson and Becker (1998)
argue that this “moral hazard” effect induces excessive longevity because individuals do not internalize the
costs to annuity programs of their increased lifespan.

8Remaining wealth at time 0,Wi(0), is zero under full annuitization, which implies W0 = (1 + ξ)aa(0, i).

11



is given by:

∂V /∂ε
∂V /∂W

∣∣∣∣∣
ε=0

=
∫ T

0
S̃(i, t)



∫ t

0

∑
j>i

δij(s)ds


e−ρtu(ci(t),qi(t)) +

∑
j>i λij(t)V (t,Wi(t), j, ā)

uc(ci(0),qi(0))


−(1 + ξ)āe−rt

1 +
∑
j>i

λij(t)a(t, j)




−
∑
j>i

δij(t)
(
V (t,Wi(t), j, ā)
uc(ci(0),qi(0))

− (1 + ξ)ā e−rta(t, j)
)dt.

(10)

By aggregating across the entire population by going over all individuals of age a in

health state i, f (a, i), it follows that the aggregate willingness to pay for life extension

from the intervention is:

Aggregate V LE =
∑
a

n∑
i=1

MVLE(a, i,δ)f (a, i). (11)

If the number of health states is one (i.e., health is deterministic), then a medical

advance only perturbates mortality probabilities (i.e., δij(t) = 0 ∀ j , n+ 1) and equation

(10) reduces to:

∂V /∂ε
∂V /∂W

∣∣∣∣∣
ε=0

=
∫ T

0
S(t)

(∫ t

0
δ(s)ds

)[
e−ρtu(c(t),q(t))
uc(c(0),q(0))

− (1 + ξ)āe−rt
]
dt. (12)

While measure (i) focuses on efficiency and allocation of resources, it is often criticized

for equity concerns. That is, irrespective of wealth status, each dollar of surplus is valued

equally, see the discussion above. This is overcome by a utilitarian perspective. In our

context, we can aggregate marginal improvements to utility across different individuals

via:

Aggregate V LE =
∑

a
∑n

i=1 Vε(a, i,δ)f (a, i)
w

, (13)

where w is (a uniform) normalization across all ages a and states i.

We note that the distinction between the two measures is not material in a determinis-

tic, complete setting as in Murphy and Topel (2006), since marginal utilities are equated.

However, it matters for a stochastic approach. In order to not take a stance, we show

results under both measures—one emphasizing efficiency and the other prioritizing eq-

uity. There are, of course, many alternatives to our extreme case of equal weights that
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intermediate the trade-off between efficiency and equity. We do not aim to address the

longstanding debates in welfare economics.

3 Numerical Solution Algorithm

Proposition 2 give an analytical solution for the optimal consumption path:

C∗i (t) = C(t,Wi(t), i,a) ∀ i and t.

By varying initial wealth and annuity level, in principle this solution allows us to deter-

mine optimal consumption for any state-variable configuration in the stochastic problem

(1). However, the solution in Proposition 2 depends on the value function in higher states

and the “kink point” T ∗i , i = 1,2, ...n, which in turn depends on initial wealth and annuity

level.

In what follows, we present a numerical solution algorithm that first solves the op-

timal consumption paths in state n—along with the associated “kink point”—and then

those in states n− 1,n− 2, · · · ,1 in the backward order.

State n problem

Since the utility of death is normalized to 0, from Proposition 2, we have:

C∗n(t) = u−1
c

(
eρt

1
S̃(t,n)

exp
{
−ρT ∗n +

∫ T ∗n

t
rn(s)ds

}
S̃(T ∗n ,n)uc(mn(T ∗n) + ā)

)
= u−1

c

(
eρ(t−T ∗n)exp

{
−
∫ T ∗n

t
(µn(s)− rn(s))ds

}
uc(mn(T ∗n) + ā)

)
.

(14)

Assume that an individual starts in health state n with initial wealth Wn(0) = W0. Again

from Proposition 2, T ∗n is the greatest lower bound such that Wn(t) = 0 ∀ t ∈ [T ∗n ,T ], indi-

cating that consumption from time 0 to T ∗n should exhaust wealth and income from time

0 to T ∗n . Mathematically:

W0 +
∫ T ∗n

0
e−

∫ t
0 rn(s)dsmn(t) + ā dt =

∫ T ∗n

0
e−

∫ t
0 rn(s)dsC∗n(t) dt,

which provides a wealth constraint. Plugging C∗n(t) into the wealth constraint, we can

solve for T ∗n(W0) and hence C∗n(t) for any W0 analytically given tractable assumptions on

the utility function, rate of time preference, force of mortality, quality of life, interest
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rate, income and annuity in state n.

Problem for state n− 1, n− 2, ...

The challenge for solving the optimal consumption paths in health states other than state

n resides in finding the marginal utility of wealth following a health shock, ∂V (t,Wi(t),j)
∂Wi(t)

.

By the first-order condition of the HJB equation (4), ∂V (t,Wi(t),i)
∂Wi(t)

= uc(C∗i (t)), ∀ i ∈ {1, · · · ,n}.

Then for any j > i, we can determine ∂V (t,Wi(t),j)
∂Wi(t)

by uc(C∗j (t)) =
∂V (t,Wj (t),j)

∂Wj (t)
, where C∗j (t) is

determined by the Wj(0) such that Wj(t) = Wi(t).

We start with state n−1. Because Wn−1(t) is unknown for any t < T ∗n−1, we use numerical

approximation to obtain a quasi-analytical solution for C∗n−1(t). With a first difference

approximation, the wealth dynamic becomes:

Wn−1(T ∗n−1 − (k − 1)δt)−Wn−1(T ∗n−1 − kδt)
δt

= rn−1(T ∗n−1)Wn−1(T ∗n−1 − kδt)−C
∗
n−1(T ∗n−1 − kδt) +mn−1(T ∗n−1 − kδt) + ā, (15)

for some δt small and k = 1, · · · ,T ∗n−1/δt.

By Proposition 2, rearranging Equation (15) gives, ∀ k ∈
{
1, · · · , T

∗
n−1
δt

}
:

Wn−1(T ∗n−1 − (k − 1)δt)−Wn−1(T ∗n−1 − kδt)
δt

= mn−1(T ∗n−1 − kδt) + ā+ rn−1(T ∗n−1 − kδt)Wn−1(T ∗n−1 − kδt)

−u−1
c

e−ρkδt S̃(T ∗n−1,n− 1)

S̃(T ∗n−1 − kδt ,n− 1)
exp

∫ T ∗n−1

T ∗n−1−kδt
rn−1(s)ds

uc(mn−1(T ∗n−1) + ā)

+ eρ(T ∗n−1−kδt)
exp

{
−
∫ T ∗n−1−kδt

0 rn−1(s)ds
}

S̃(T ∗n−1 − kδt ,n− 1)

∫ T ∗n−1

T ∗n−1−kδt
e
ρs+

∫ s

T ∗n−1−kδt
rn−1(s)ds

S̃(s,n− 1)λn−1,nuc(C
∗
n(s))ds

, (16)

where C∗n(s) corresponds to the Wn(0) such that Wn(s) = Wn−1(s) and the integral can

be approximated by the Trapezoidal rule. Given a specific T ∗n−1, the only unknown in

equation (16) is Wn−1(T ∗n−1 − kδt), which can be solved numerically. Sequentially, we get

the initial wealth in state n + 1, Wn−1(0), for any given T ∗n−1. We then obtain the optimal

consumption path on a discretized time grid, C∗n−1(T ∗n−1 − kδt), by equation (15) and a

continuous path, C∗n−1(t), by linear interpolation.

Now since C∗n(t) and C∗n−1(t) are known for any given Wn(0) and Wn−1(0), respectively,

C∗n−2(t) can be solved with the same algorithm, using solutions from higher-order states

as inputs. Repeatedly, we obtain C∗i (t) for all health states i.

A key benefit in pursuing a closed-form solution lies in the generalization to more
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complex models with a high-dimensional state space. While our closed-form solution is

implicit and therefore requires numerical solution of a set of integral equations, we can

solve the problem iteratively state-by-state. Unlike conventional numerical methods used

in the optimal control literature such as value iteration that searches the entire space and

approaches the exact solution only when the number of iterations goes to infinity, the

effort to solve higher-dimensional problems with this algorithm grows linear in the num-

ber of states, so that solving for high-dimensional problems becomes computationally

feasible.

4 Data and Calibration

In this section, we introduce the data and the calibration we use when applying our

model. The first part provides an introduction to the Future Elderly Model (FEM), which

is where we draw transition probabilities, mortality probabilities, quality of life esti-

mates, and medical spending. We then describe the specification of preferences and the

calibration of the remaining parameters not originating from the FEM.

4.1 Future Elderly Model (FEM)

We obtain individual-level data on mortality, disease incidence (transition rates), quality

of life, and medical spending from the FEM. At its core, the FEM operates as an economic-

demographic micro-simulation model that combines data from nationally representative

sources. Drawing from the Health and Retirement Study (HRS), Panel Study of Income

Dynamics (PSID), National Health Interview Survey (NHIS), Medicare Current Benefi-

ciary Survey (MCBS), and the Medical Expenditure Panel Survey (MEPS), the FEM pro-

vides a uniquely rich set of information about the U.S. elderly.

In the context of our study, the FEM produces estimates for individuals aged 65-110

with different comorbidities. More specifically, it accounts for six chronic conditions (can-

cer, diabetes, heart disease, hypertension, chronic lung disease, and stroke) and six im-

paired activities of daily living (bathing, eating, dressing, walking, getting into or out of

bed, and using the toilet). We divide the health space into n = 6 states: state 1 corresponds

to healthy with no chronic conditions or impaired activities of daily living (ADL); state 2

corresponds to 1 chronic condition or 1 ADL; state 3 corresponds to 1 chronic condition

and 1 ADL; state 4 corresponds to multiple (2 or more) chronic conditions or multiple

ADLs; state 5 corresponds to multiple chronic conditions and multiple ADLs; and state 6

corresponds to death.
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Health Life Prob. stay in Survival prob. Survival prob.
State Expectancy state i after 5 yrs for 5 yrs for 15 yrs

1 19.86 0.533 0.963 0.743
2 17.93 0.549 0.944 0.652
3 16.33 0.547 0.906 0.573
4 15.07 0.792 0.887 0.501
5 9.21 0.655 0.655 0.209

Table 1: Summary Statistics for 65-year-olds in the FEM

Table 1 shows the summary statistics on life expectancy and survival probabilities for

65-year-olds in our model setting. At age 65, life expectancy ranges from 19.86 years for

healthy individuals to 9.21 years for sicker people with multiple chronic conditions and

multiple ADLs. The probability of surviving to age 80 ranges from 74.3% to 20.9%, indi-

cating substantial variations in longevity prospects across individuals in different health

states.

4.2 Preferences and Financial Market Parameters

To calculate the optimal consumption paths and to quantify the value of health and

longevity improvements, we need to specify the utility function. Following the life-cycle

literature, we assume utility from consumption takes the form of an isoelastic function

that implies constant relative risk aversion (CRRA). Since our utility function also incor-

porates quality of life, following Bauer et al. (2023), we assume:

u(c,q) = q

(
c1−γ − c1−γ

1−γ

)
,

where γ denotes degree of risk aversion, and c denotes subsistence level. The quality

of life measure has non-negative values of q ≤ 1, where q = 1 indexes perfect health,

and is taken from the FEM. As explained in Bauer et al. (2023), utility is positive when

non-medical consumption, c, exceeds the subsistence level, c. The multiplicative rela-

tionship between quality of life and consumption utility implies the marginal utility of

non-medical consumption increases with the health-related quality of life (negative state

dependence), in line with the evidence in Viscusi and Evans (1990); Sloan et al. (1998);

Finkelstein et al. (2013), and consistent with the assumption in Murphy and Topel (2006),

although the evidence in the literature is mixed. This gives us four remaining parameters

to calibrate: risk aversion γ, subsistence level c, rate of time preference ρ, and rate of
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interest ri(t).

Following convention, we use exponential discounting with constant rate of interest

and constant rate of time preference, where ri(t) = r = 0.03 (Siegel, 1992) and ρ = 0.05

(Hurd, 1989). Consistent with the parametrization in Murphy and Topel (2006) and

Bauer et al. (2023), we choose a moderate risk-aversion parameter γ = 1.2 and set the

subsistence level at $5,000.

Since our analysis focuses on the retired population aged 65 and above, we make a

simplifying assumption that labor income is zero throughout, i.e., mi(t) = 0 ∀i and ∀t,
although individuals receive (guaranteed, flat) annuity income from social security and

possible defined benefit retirement plans. We further assume that the maximum possible

lifetime is 50, or age 115, that mortality follows Gompertz-Makeham law with µi(t) =

ai + bi e
git, and that transition follows Gompertz law with λij(t) = aij e

bij t. We estimate the

parameters ai , bi , gi , aij , and bij using mortality and transition data from the FEM.

5 Application Results

This section presents the results from our quantitative analysis, using our calibrated

model. Section 5.1 investigates the optimal consumption and optimal annuity choices.

Section 5.2 studies the complementarity between annuity incomes from public programs

and investments in health and longevity. And Section 5.3 measures the aggregate value of

health and longevity improvements from future medical advances against life-threatening

disease, and discusses the impacts of incomplete annuity markets and stochastic health

risks on the results.

5.1 Optimal Consumption and Annuity Choices

To illustrate that our model can generate a variety of consumption profiles, we start with

showing optimal consumption paths for two random trajectories, where we assume a

given annuity income of $40,000. Path 1 in Figure 1a corresponds to a healthy 65-year-

old who experiences a minor health shock at age 68, where she develops one chronic con-

dition or one ADL. The individual experiences another health shock at age 71, suffering

multiple chronic conditions or multiple ADLs until she dies at age 92. Path 2 in Figure

1a corresponds to an individual that also starts healthy at age 65, then inflicts multiple

chronic conditions or multiple ADLs from a health shock at age 74, and then dies at age

81. At age 65, both individuals have $669,250 in non-annuitized liquid wealth, which is

the average wealth for healthy 65-year-olds in the FEM. As shown by the dashed lines in
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Figure 1a, consumption jumps up whenever there is a negative health shock. While the

two individuals start with the same health conditions and the same wealth level, their

optimal consumption paths vary significantly because they face distinct health shocks,

which is a result from stochastic health risks. Note that as a consequence, their wealth

trajectories will also be different. Consumer 1 dies without remaining liquid wealth and

finances consumption solely from annuity income over the last years of her life; consumer

2 dies with some remaining, unspent wealth.

(a) Sample optimal consumption paths (b) Monte Carlo simulation: optimal consumption
paths

Figure 1: Optimal consumption paths

To illustrate the variation in optimal consumption choices from stochastic health risks

among the retirees more generally, we conduct a Monte Carlo exercise with 100,000 indi-

viduals at age 65, where the proportion of 65-year-olds in each health state and their

wealth levels follow information from the FEM. Again we assume annuity income of

$40,000. Figure 1b shows the mean (blue solid line) and the 95% confidence interval

(shaded area) for the life-cycle optimal consumption choices of these 100,000 individu-

als. We observe substantial variation in their consumption paths. This is because each

individual faces stochastic health shocks and follows a distinct health path as they grow

older. Although some of the dispersion in consumption comes from differences in their

initial health conditions and wealth amounts, individual-level health shocks play a cen-

tral role in generating variations in consumption, where figure 1a shows one example.

We note that there is also substantial dispersion in the times when the individuals first

solely rely on annuity income to finance future consumption, i.e., when consumption hits

$40,000 (this corresponds to the “kink point” in the optimization path evaluated above).

We next investigate annuity choices based on our model. We start with a hypothetical
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example, where the solution is known. More specifically, we consider a healthy individual

at age 65 and we assume constant quality of life, constant lifetime income, r = ρ, and zero

mark-up rate for annuities. Under these assumptions, Yaari’s famous full annuitization

result (Yaari, 1965) holds (see Davidoff et al. (2005) for a formal argument).

Figure 2a shows how lifetime utility varies in this situation with the annuitization

level. On the x-axis are annual annuity payouts, ranging from $10,000 to $56,000, and

we determine (liquid, remaining) wealth as a common initial wealth minus the present

value of the annuity, where the initial wealth is equal to the present value of the highest

amount of annuity payouts depicted on the x-axis. As is evident from the figure and

consistent with Yaari’s result that people without bequest motives should fully annuitize,

lifetime utility at the highest annuity level (the point farthest to the right) corresponds to

full annuitization.

We show next that the full annuitization result breaks under more general assump-

tions, when there is a limited menu of retirement products. We again determine how

lifetime utility varies with annuity income, but we account for three features absent in

2a. First, we integrate the quality of life profiles from the FEM, which imply that con-

sumption at different age/state combinations is valued differently. Second, we allow for

out-of-pocket medical spending. Incorporating medical spending directly in the wealth

dynamic, we have:

W ′i (t) = ri(t)Wi(t)−Ci(t) +mi(t) + ā− hi(t),

where mi(t) + ā is lifetime income and hi(t) is medical spending in state i at time t. We

use data on individual out-of-pocket (OOP) medical spending by age and health state

from the FEM. To align with our continuous-time setup, we fit health expenditure by age

in any health state using an exponential specification. Because OOP medical spending

data for ages above 100 is noisy for all health states, we assume OOP medical spending is

constant at ten thousand dollars from age 100 onward for all states. That is, hi(t) = aie
bit

for t < 35 and hi(t) = 10000 ∀ i for t ≥ 35, where ai and bi are constants. Third, we

consider a loading factor for private-market annuities. Mitchell et al. (1999) document

that the expected present value of annuity payouts per dollar of annuity premium is

between 80 to 85 cents. Relying on their estimates, we assume that 65-year-old retirees

get annuities at a fair rate up to $25,000 per year from public annuity programs, while any

supplementary annuity payouts from the private market are subject to a 15% loading. We

choose $25,000 because this is close to the average social security benefits for the retired.

Figure 2b shows the lifetime utility for healthy 65-year-olds under different annuitiza-

tion levels and these three modifications (quality of life profiles, OOP medical spending,

and a loading for private annuity products). The optimal annuity is now partial. This is
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(a) Yaari’s result: special conditions (b) with OOP medical spending and mark-up rate

Figure 2: Lifetime utility versus annuity level for healthy individuals at age 65.

consistent with results from Reichling and Smetters (2015), who show that in a frame-

work where medical spending and mortality are correlated, consumer demand for flat

life annuities is significantly reduced. We find that the optimal annuity level reduces to

about $40,000. This indicates that a rational healthy retiree at age 65 would choose to

purchase a life annuity with $15,000 annual payout from the private market. Bequest

motives and other aspects would further reduce the optimal annuity level, so that low

observed annuitization rates seem rational in this context (see also Inkmann et al., 2011;

Lockwood, 2012, for similar observations).

5.2 Public Annuity Programs and Health Investments

In what follows, when not mentioned otherwise, we use FEM quality of life profile for

calculations. Figure 3a shows the VSL defined in equation (9) for healthy individuals at

age 65 under different annuity levels. VSL is the highest at an annuity level of roughly

$25,000. As consumers hold larger fractions of their initial wealth in flat life annuities,

their willingness to pay for a marginal improvement in longevity decreases, with the

lowest value at full annuitization. Interestingly, the maximal willingness to pay generally

is higher for annuity levels below the optimal annuitization level, which originates from

differences in the marginal utility of consumption. Nonetheless, we observe that public

annuity income from social security increases VSL, illustrating the complimentarity of

public annuity programs and public spending to improve health outcomes.

Figure 3a is cast for a specific health intervention—VSL corresponding to avoiding

immediate death—and a specific cohort of individuals—65 year-olds in health state 1. To
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(a) VSL for healthy individuals at age 65 (b) Value of health improvements for all
retirees

Figure 3: Willingness to pay for health and longevity improvements versus annuity level.

appraise how annuitization levels affect a more general health intervention, we use aggre-

gate measures defined in Section 2.3 to estimate the social value of health and longevity

improvements from a particular health intervention.

For defining the health intervention, we again turn to the FEM. We use a medical ad-

vance against cancer as an example, where we label the post-intervention population as

the cancer cohort. Table 2 shows the changes in life expectancy for 65-year-olds and 75-

year-olds following this medical intervention that reduces the likelihood of cancer onset

as well as cancer mortality. In the cancer cohort, life expectancy at age 65 (75) increases

by 1.58% (2.95%) for healthy individuals while life expectancy at age 65 (75) increases

by 5.13% (11.81%) for individuals with multiple chronic conditions and multiple ADLs.

Since individuals with cancer and the elderly will benefit most from the cancer interven-

tion, it is not surprising to see that this medical advance against cancer has larger impact

on sicker people and on older people.

State ∆LE(65) %∆LE(65) ∆LE(75) %∆LE(75)

1 0.314 1.58% 0.305 2.95%
2 0.40 2.25% 0.38 4.36%
3 0.48 2.96% 0.42 5.67%
4 0.52 3.46% 0.44 6.91%
5 0.47 5.13% 0.31 11.81%

Table 2: Summary Statistics for the Cancer Cohort

Because the FEM provides a new set of information on transition and mortality rates,
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the perturbation δij(t) resulting from this intervention is

δij(t) = λc
ij(t)−λ

b
ij(t),

where λb
ij(t) and λc

ij(t) are the transition rates before and after the medical advance. We

can then rely on equations (10) and (11) to calculate the aggregate value of the interven-

tion, using the 2010 U.S. elderly population to defined the relevant weights f (a, i).9

Figure 3b shows how the value of health and longevity improvements from this in-

tervention against cancer among retirees varies by the annuity level. Within the current

public annuity system, the median social security income and the median pension income

for retirees add up to $35,000, under which the value of health and longevity improve-

ments is $0.53 trillion. Absent any public annuity program but guarantee people with

lifetime income at the subsistence level, the value is $0.418 trillion. Hence, there is a 27%

increase in the value of health and longevity improvements associated with a medical ad-

vance against cancer given the current public annuity programs. In other words, public

annuity programs provide a strong complement to this health intervention.

Increases in social security would further boost this value, although this boost is not

uniform across consumers and conditions. Figure 3a shows one example: VSL for a

healthy and young retiree is close to maximal under an annual annuity payout of $25,000.

This indicates that the increase in the value of health and longevity improvements from

an increase in social security benefits mostly originate from sicker and older people’s

higher willingness to pay for living a little longer and better.

5.3 Value of Health and Longevity Improvements

Our focus in the previous section was how annuity income, e.g. from public annuity

programs, affect the social value of health interventions. In this section we investigate to

what extent values based on our model differ from the prior estimates, which were cast

under the assumption of complete annuitization and determinstic health.

For a benchmark, we determine the value for the health intervention introduced in the

previous section using the analysis in Murphy and Topel (2006) under complete markets

and deterministic health. The value of a medical advance α in Murphy and Topel (2006)

is defined as:

Vα =
∫ ∞
a

v(t)S(t,a)Γα(t,a)dt +
∫ ∞
a

H ′α(t)
H(t)

u(c(t), l(t))
uc

S(t,a)dt, (17)

9More details on the calculation steps are provided in the next section.
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where v(t) is the value of a life-year, S(t,a)Γα(t,a) is the discounted impact on survival

probabilities from factor α, H(t) is quality of life, and l(t) is leisure. Because our model

does not include leisure and our utility function incorporates quality of life, we abstract

from H(t) and l(t). Thus, equation (17) reduces to:

Vα =
∫ ∞
a

v(t)S(t,a)Γα(t,a)dt =
∫ ∞
a

v(t)e−r(t−a)S̃ ′α(t,a)dt, (18)

where v(t) = y(t) + u(c(t),q(t))
uc(c(t),q(t)) − c(t) and S̃ ′α(t,a) is the difference in survival probabilities

following α. Since we focus on the retired population, it is reasonable to assume income

y(t) is zero.

In line with the calibrations in Murphy and Topel (2006), we use a wealth level for

age 65 so that the estimated value of statistical life for age 70 is $2 million. We then fol-

low Yaari’s framework (Yaari, 1965) to solve for optimal consumption choices c(t), where

single-state quality of life and single-state survival probabilities are obtained by simulat-

ing from our FEM data. More specifically, we construct a life table (for people with ages

65 and older) by simulating one million health paths with a pre-specified proportion

starting in each health state at age 65. Again using the 2010 U.S. elderly population and

the cancer intervention described in the previous section, via equation (18), the estimate

for the value of health and longevity improvements among retirees is $1.18 trillion, indi-

cated by the red solid line in figure 4. Murphy and Topel (2006) find that the social value

of a 10% reduction in cancer mortality is estimated at $4.7 trillion for the entire U.S. pop-

ulation. Our estimate of $1.18 trillion aligns in magnitude with this number, considering

the distinct nature of the intervention and our focus on the retired population exclusively.

We denote this framework by scenario (i).

Next, using equation (11), we estimate the value of health and longevity improve-

ments from the cancer intervention under our framework, in which the annuity market

is incomplete and health is stochastic. More specifically, we simulate 100,000 health

paths starting at age 65 following the initial health distribution. To keep results from dif-

ferent frameworks comparable, we control for the total wealth (i.e., liquid assets plus the

present value of annuities). In this case, we calculate the multiplier m such that m times

the weighted-average wealth at age 65 is the same as the wealth at age 65 in scenario (i).

This weighted-average is calculated by the initial health distribution and wealth at age 65

in each state, all given by the FEM data. Once we know m, we know the calibrated wealth

at age 65 for each health state, and hence the entire wealth path and the marginal value

of life extension by equation (10) for any simulated health path. Taking the average of the

marginal values of life extension across 100,000 realizations for each age, we obtain an es-
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Figure 4: Aggregate willingness to pay for health and longevity improvements versus annuity
level.

timate for MVLE(a, i,δ). By equation (11) and the 2010 U.S. elderly population, we get the

estimates for the aggregate value of this medical advance under different annuity levels,

as shown by the green solid line in Figure 4. In particular, with $35,000 annual annuity

income from public annuity programs, the value of health and longevity improvements

from the cancer intervention among retirees is $0.53 trillion, which is 55% lower than the

comparable estimate, $1.18 trillion, in the literature. For illustration purposes, we refer

to this framework as scenario (iv).

To understand the reasons behind the 55% reduction, we study the value of health and

longevity improvements under different frameworks, relaxing one assumption at a time.

Denoted by scenario (ii), we allow the annuity market to be incomplete but assume health

risk is deterministic. Similar to scenario (i), life-cycle mortality rates are deterministic;

so, we use the same single-state quality of life and single-state survival probabilities as

in scenario (i). What sets this scenario apart from the conventional framework is the

incompleteness of the annuity market, in which case we use our analytical solution for

state n to solve for optimal consumption choices instead of adopting Yaari’s framework.
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Holding total wealth for age 65 under all annuity levels constant at the calibrated wealth

level for age 65 in scenario (i), we, by equations (11) and (12), obtain the estimates for the

value of health and longevity improvements in a framework where the annuity market is

incomplete and health is deterministic. The blue solid line in Figure 4 shows the results.

With a $35,000 annuity, the U.S. retirees are willing to pay $0.96 trillion in aggregate

for this intervention against cancer. Compared to scenario (i), retirees are willing to pay

roughly 20% less. This reduction is due to the incompleteness of the annuity market,

where consumers only hold a modest fraction of their wealth in annuities. As a result,

their optimal consumption profile is decreasing in age, which in turn reduces their value

of health and longevity improvements in old ages.

Next, we allow health risk to be stochastic, in addition to relaxing the complete-

market assumption. To clearly identify the effect of stochastic health, we set wealth at

any age x to be constant across all health states and to be equal to wealth at age x in sce-

nario (ii). This eliminates any impact on the value of health and longevity improvements

from variations in wealth, either across scenarios or across health states. We denote this

framework as scenario (iii). Similar to scenario (iv), we use equations (10) and (11) to

quantify the value of health and longevity improvements, the estimates of which under

different annuity levels are shown by the yellow solid line in Figure 4. With a $35,000

annuity, this intervention against cancer is worth $0.76 trillion, about 35% lower than the

value in scenario (i). The additional 15% reduction in the value of health and longevity

improvements is due to people’s ability to adjust their consumption decisions follow-

ing negative health shocks. Under the stochastic-health and incomplete-market frame-

work, any rational individual with lifetime income and no bequest motives will rationally

choose to spend more after experiencing a negative health shock, as shown in Figure

1a. Intuitively, this is because people expect themselves to live for shorter periods when

their health conditions suddenly get worse, thus incentivizing them to spend down their

wealth more quickly to avoid dying with unutilized wealth that could have been enjoyed

earlier in their lifetime. Hence, the ability to adjust consumption decisions, which exists

in stochastic-health settings only, tempers the adverse effect of negative health shocks on

lifetime utility, which in turn reduces people’s willingness to pay to avoid or alleviate

negative health shocks.

The remaining 20% reduction in the value of health and longevity improvements

stems from wealth variations across individuals, the only difference between scenarios

(iii) and (iv). More specifically, empirical evidence suggests healthier people are on av-

erage wealthier upon retirement. Using wealth data by health states at age 65 from the

FEM, we find that the value of health and longevity improvements is 30% lower than that
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when wealth is constant across health states. Since individuals with poorer health con-

ditions benefit more from this intervention (as shown by Table 2), reducing their wealth

upon retirement lowers the aggregate willingness to pay for health and longevity im-

provements. As of now, we do not yet have information about wealth distributions by

health state for later ages, so we rely on simulation to estimate the marginal value of life

extension for each age for each state, MVLE(a, i,δ).

Figure 5: Aggregate utility of health and longevity improvements with equal weights versus
annuity level.

Figure 5 shows results for the value of health and longevity improvements under the

same frameworks, scenarios (i) - (iv), using aggregate utility with equal weights for all

individuals, or equation (13), as the measure. Table 3 summarizes the values of health

and longevity improvements under an annual annuity payout of $35,000 within scenar-

ios (i) - (iv) and two different measures. Without loss of generality, we choose the weights

to be the marginal utility of consumption at age 65 within the conventional framework

(scenario (i)) for all individuals, when converting utility to numeraire in consumption

goods. Under the utilitarian approach, the reduction in the value of health and longevity

improvements due to the first effect, incompleteness of annuity markets, and the third ef-
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Scenario Aggregate WTP (trillion) Aggregate Utility (trillion)

(i) 1.18 1.18
(ii) 0.96 1.07
(iii) 0.76 0.78
(iv) 0.53 0.70

Table 3: Estimates for the value of health and longevity improvements under $35,000 annuity
level

fect, wealth variations by health state, are both smaller, whereas the reduction due to the

second effect, ability to adjust consumption decisions following health shocks, is larger.

Under the willingness-to-pay measure, we divide the marginal utility of life extension

by the marginal utility of wealth, which is equal to the marginal utility of consumption,

uc(Ci(t),qi(t)). This term is smaller for individuals with worse health conditions since

their consumption levels are higher. In other words, sicker people and older people are

given more weights within the willingness-to-pay measure. When we switch to the utili-

tarian world where we give everyone the same weight, the effects that are primarily driven

by sicker and/or older individuals, less consumption smoothing due to incomplete mar-

kets and less wealth due to poorer health conditions upon retirement, become smaller.

The effect due to the ability to increase consumption after some negative health shocks,

on the other hand, is driven more by the healthier ones as they are more likely to experi-

ence a negative health shock.

6 Conclusion

We develop a life-cycle framework to analyze optimal consumption and annuity choices

among retirees, considering stochastic health risks and incomplete annuity markets. We

use this framework to estimate the value of health and longevity improvements. Our

main finding is that, compared to the estimates from the prevailing method in the liter-

ature that assumes deterministic health and full annuitization, our estimates associated

with a medical advance in cancer for the retired population is substantially lower—55%

reduction under an aggregate willingness-to-pay measure and over 40% reduction under

an aggregate utility measure.

This reduction is attributed to the interplay of three key factors. First, the incomplete-

ness of annuity markets results in decreasing optimal consumption patterns, diminishing

the value of health and longevity improvements in older ages. Second, in the context of

stochastic health, individuals can adjust their consumption decisions following a negative
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health shock, mitigating some of the impact of the health shock on lifetime utility and,

consequently, the willingness to pay to avoid it. Third, individuals with poorer health

conditions, who stand to benefit the most from health improvements, on average possess

fewer assets upon retirements, leading to lower aggregate willingness-to-pay.

As a second result, this paper finds a strong complementary relationship between

annuity income from public programs such as social security and investments in health

and longevity improvements. The current public annuity programs boost the value of

health and longevity improvements from a medical advance against cancer by 27%, and

increasing public annuity payouts further boosts people’s aggregate willingness-to-pay

for improvements in health and longevity. This boost, however, is not uniform across

individuals but stems from those with poorer health conditions.

Our findings are relevant for policymakers considering investments in health research

and development as well as the payment strategies of public annuity programs. While

our estimates of the value of health interventions is lower than that in prior literature,

our figures are still large, in part due to public annuity programs.
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Figure 6: Illustrative example: survival-contingent income can generate non-interior solutions

(a) One set of non-interior solutions
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(b) Two sets of non-interior solutions
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Notes: The solution to the consumer’s maximization problem may be non-interior in the presence of survival-contingent income. Panel (a) gives an example
where there is one set of non-interior solutions. Panel (b) gives an example where there are two sets of non-interior solutions. Income, illustrated by the dashed
blue line, includes both labor income and annuity income.
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A Mathematical Proofs

Proof of Lemma 1. We derive the first-order necessary conditions for a maximun corresponding to the

Hamiltonian in equation (5). By the maximum principle,

∂H(Wi(t),Ci(t),pi(t),ηi(t))
∂Ci(t)

= 0,

where ∂H(Wi(t),Ci(t),pi(t),ηi(t))
∂Ci(t)

= e−ρtS̃(t, i)∂u(Ci(t),qi(t))
∂Ci(t)

− pi(t). This gives condition (i).

The costate variable pi(t) should satisfy

p′i(t) = −
∂H(Wi(t),Ci(t),pi(t),ηi(t))

∂Wi(t)
,

where ∂H(Wi(t),Ci(t),pi(t),ηi(t))
∂Wi(t)

= ri(t)pi(t)+ηi(t)+e−ρtS̃(t, i)
∑

j>i λij(t)
∂

∂Wi(t)
V (t,Wi(t), a, j). This results in con-

dition (ii).

By the non-borrowing constraint Wi(t) ≥ 0, we obtain condition (iii). Conditions (iv) and (v) corre-

spond to boundary conditions and ensure that optimal solution exists. ■

Proof of Proposition 2. Following Proposition 1 in Leung (1994), one can show the following: the

Hamiltonian is regular on [0,T ), so optimal consumption Ci(t) is everywhere continuous; the state-

variable inequality constraint is of first-order, so p
(i)
t is everywhere continuous; and optimal consump-

tion Ci(t) is continuously differentiable when Wi(t) > 0 (i.e., when the wealth constraint is not binding).

First, consider the case when Wi(t) > 0. Define the elasticity of intertemporal substitution, σ, as

1
σ
≡ −uccc

uc

and define the elasticity of quality of life with respect to the marginal utility of consumption as

η ≡
ucqq

uc

Differentiating the first-order condition for consumption with respect to t, plugging in the result for

the costate equation and its solution, and then rearranging yields the rate of change in life-cycle con-

sumption

ċi
ci

= σ (r − ρ) + ση
q̇i
qi
− σλi,n+1(t)− σ

n∑
j=i+1

λij(t)

1− uc
(
c (t,Wi(t), j) ,qj(t)

)
uc (c (t,Wi(t), i) ,qi(t))

,
which is weakly declining by assumption.

The presence of life-cycle earnings introduces the possibility of multiple sets of non-interior solu-

tions (e.g., right panel of Figure 6). Modeling these scenarios is possible, but cumbersome. As discussed

in the main text, we therefore restrict ourselves to considering the case with a single set of non-interior

solutions (i.e., a single “kink point”, see left panel of Figure 6). A sufficient (but not necessary) as-
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sumption is that consumption growth is weakly declining. We employ that assumption in the follow-

ing Lemma, which establishes the existence of a single kink point, T ∗i , where the consumer runs out of

wealth.

Lemma A.1. Let m∗i (t) = mi(t) + ā. Assume mi(t) is non-decreasing. Then there must exist a T ∗i
such that (1) Wi(t) = 0 and Ci(t) = m∗i (t) for t ≥ T ∗i ; and (2) Ci(t) > m∗i (t) for t < T ∗i . The solution
to the costate equation on

[
0,T ∗i

]
is thus:

p
(i)
t =


∫ T ∗i

t
e(r−ρ)sS̃ (i, s)

∑
j>i

λij(s)
∂V (s,Wi(s), a, j)

∂Wi(s)
ds

e−rt +θ(i)e−rt

where θ(i) > 0 is a constant.

Proof. By assumption, ċi
ci
< 0 whenever Wi(t) > 0. Following the same argument as in Propo-

sition 2 of Leung (1994), there is a smallest T ∗i such that Wi(t) = 0 on
[
T ∗i ,T

]
and, thus,

Ci(t) = mi(t) on
[
T ∗i ,T

]
. Since this is the smallest such T ∗i , there exists an interval

(
T i ,T

∗
i

)
such that Wi(t) > 0 and Ci(t0) > m∗i (t0) for a t0 in the vicinity of T ∗i . Now assume Wi (T i) = 0.

Then there exists a t1 in the vicinity of T i such that ci (t1) < m∗i (t1). This is a contradiction,

since m∗i (t) is non-decreasing (because mi(t) is non-decreasing and ā is a constant) and Ci(t) is

decreasing whenever Wi(t) > 0. Hence Wi(t) > 0 on [0,T ∗i ) and Ci(t) > m∗i (t) for t ∈ [0,T ∗i ). ■

It follows that Wi(0) +
∫ T ∗i

0
e−

∫ s
0 ri(s)ds(mi(t) + ā)dt =

∫ T ∗i
0

e−
∫ s
0 ri(s)dsC∗i (t)dt. That is, consumption from

time 0 to T ∗i should exhaust wealth and income from 0 to T ∗i . Since Wi(t) > 0 for all t ∈ [0,T ∗i ), by

condition (iii) we have ηi(t) = 0 for all t in [0,T ∗i ).

Then (ii) becomes −p′i(t) = ri(t)pi(t) + e−ρtS̃(t, i)
∑

j>i λij(t)
∂

∂Wi(t)
V (t,Wi(t), a, j). Solving for pi(t) we

have

pi(t) = e−
∫ t
0 ri(s)ds

∫ T ∗i

t
exp

{
−ρs+

∫ s

0
ri(u)du

}
S̃(s, i)

∑
j>i

λij(s)
∂

∂Wi(s)
V (s,Wi(s), a, j)ds

+βie
−
∫ t
0 ri(s)ds,

where βi ∈ R is a constant. Condition (i) then becomes

e−ρtS̃(t, i)uc(Ci(t)) = βie
−
∫ t
0 ri(s)ds

+ e−
∫ t
0 ri(s)ds

∫ T ∗i

t
exp

{
−ρs+

∫ s

0
ri(u)du

}
S̃(s, i)

∑
j>i

λij(s)
∂

∂Wi(s)
V (s,Wi(s), a, j)ds.
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This implies that

C∗i (t) =u−1
c

(eρt
1

S̃(t, i)
βie
−
∫ t
0 ri(s)ds

+ e−
∫ t
0 ri(s)ds

∫ T ∗i

t
exp

{
−ρs+

∫ s

0
ri(u)du

}
S̃(s, i)

∑
j>i

λij(s)
∂

∂Wi(s)
V (s,Wi(s), a, j)ds

, (A.1)

with boundary condition

C∗i (T
∗
i ) = u−1

c

(
eρT

∗
i

1
S̃(T ∗i , i)

βie
−
∫ T ∗i
0 ri(s)ds

)
= mi(T

∗
i ) + ā.

Solving for βi we have

βi = e−ρT
∗
i +

∫ T ∗i
0 ri(s)dsS̃(T ∗i , i)uc(mi(T

∗
i ) + ā).

Plugging βi into Equation A.1, we obtain

C∗i (t) =u−1
c

eρt 1
S̃(t, i)

exp
{
−ρT ∗i +

∫ T ∗i

t
ri(s)ds

}
S̃(T ∗i , i)uc(mi(T

∗
i ) + ā)

+ e−
∫ t
0 ri(s)ds

∫ T ∗i

t
exp

{
−ρs+

∫ s

0
ri(u)du

}
S̃(s, i)

∑
j>i

λij(s)
∂

∂Wi(s)
V (s,Wi(s), a, j)ds

.
■

Proof of Proposition 3 and Corollary 4. Our goal is to derive expressions for VSL when annuity mar-

kets are incomplete and the consumer is endowed with state-dependent life-cycle income. We first

consider in part (i) the case with life-cycle earnings only. This part also provides expressions for the

incomplete markets case at time t > 0, because after a flat annuity has been purchased it is equivalent

to adding a constant to life-cycle earnings. Part (ii) considers the optimal purchase of the annuity and

provides expressions for VSL at time t = 0.

(i) No annuity markets
Denote the consumer’s earnings in state i at time t as mi(t). The consumer’s maximization problem

is again equation (1), but the law of motion for wealth now excludes annuity:

W (0) = W0,

W (t) ≥ 0,

∂W (t)
∂t

= rW (t) +mYt (t)−C(t)

Once again, we solve this stochastic finite-horizon optimization problem by reformulating it as a de-
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terministic optimization problem. Specifically, we consider equation (3), subject to:

Wi(0) = W0,

Wi(t) ≥ 0,

∂Wi(t)
∂t

= rWi(t) +mi(t)−Ci(t)

Let δij(t) be a perturbation on the transition rate, and consider the impact on survival as described
by equation (7). From equation (3), we obtain:

∂V
∂ε

∣∣∣∣∣
ε=0

=
∂
∂ε


∫ Ti (ε)

0
e−ρt S̃ε(i, t)

u (
Cε
i (t),qi (t)

)
+
∑
j>i

(
λij (t)− εδij (t)

)
V (t,W ε

i (t), j)

dt +
∫ T

Ti (ε)
e−ρt S̃ε(i, t)

u (mi (t),qi (t)) +
∑
j>i

(
λij (t)− εδij (t)

)
V (t,0, j)

dt

∣∣∣∣∣∣∣∣
ε=0

=
∫ T

0
e−ρt S̃(i, t)



∫ t

0

∑
j>i

δij (s)ds


u(Ci (t),qi (t)) +

∑
j>i

λij (t)V (t,Wi (t), j)

−∑
j>i

δij (t)V (t,Wi (t), j)

dt
+
∫ Ti

0
e−ρt S̃(i, t)

uc(Ci (t),qi (t))
∂Cε

i (t)

∂ε

∣∣∣∣∣∣
ε=0

+
∑
j>i

λij (t)
∂V (t,Wi (t), j)

∂Wi (t)

∂W ε
i (t)

∂ε

∣∣∣∣∣∣
ε=0

dt︸                                                                                                            ︷︷                                                                                                            ︸
=0

where the second term in the last equality is equal to 0:

∫ Ti

0
e−ρtS̃(i, t)

uc(ci(t),qi(t)) ∂cεi (t)
∂ε

∣∣∣∣∣∣
ε=0

+
∑
j>i

λij (t)
∂V (t,Wi(t), j)

∂Wi(t)
∂W ε

i (t)
∂ε

∣∣∣∣∣∣
ε=0

 dt
=

∫ Ti

0
p

(i)
t

∂cεi (t)
∂ε

∣∣∣∣∣∣
ε=0

+ e−ρtS̃(i, t)
∑
j>i

λij (t)
∂V (t,Wi(t), j)

∂Wi(t)

[
−
∫ t

0
er(t−s)

∂cεi (s)
∂ε

∣∣∣∣∣∣
ε=0

ds

]
dt

=
∫ Ti

0
θ(i)e−rt

∂cεi (t)
∂ε

∣∣∣∣∣∣
ε=0

dt +
∫ Ti

0

∫ Ti

t
e(r−ρ)sS̃ (i, s)

∑
j>i

λij (s)
∂V (s,Wi(s), j)

∂Wi(s)
dse−rt

∂cεi (t)
∂ε

∣∣∣∣∣∣
ε=0

dt

−
∫ Ti

0

∫ Ti

t
e−ρsS̃ (i, s)

∑
j>i

λij (s)
∂V (s,Wi(s), j)

∂Wi(s)
dserse−rt

∂cεi (t)
∂ε

∣∣∣∣∣∣
ε=0

dt

= θ(i) ∂
∂ε

∫ Ti

0
e−rtcεi (t)dt

∣∣∣∣∣∣
ε=0

= 0

The final equality follows because Wi(Ti) = 0 (by definition), which in turn implies 0 = W0 +
∫ Ti

0 e−rtmi(t)dt −
∫ Ti

0 e−rtcεi (t)dt,

so that differentiation yields zero. Thus we obtain:

∂V
∂ε

∣∣∣∣∣
ε=0

=
∫ T

0
e−ρtS̃(i, t)



∫ t

0

∑
j>i

δij (s)ds


u(ci(t),qi(t)) +

∑
j>i

λij (t)V (t,Wi(t), j)

−∑
j>i

δij (t)V (t,Wi(t), j)

 dt (A.2)

Dividing by the marginal utility of wealth yields the value of life-extension. Choosing the Dirac delta function for δi,n+1(t)

yields VSL:

V SL(i) =
V (0,W (0), i)
uc(ci(0),qi(0))

(A.3)

(ii) Incomplete annuity markets
Now, we introduce a one-time opportunity at time t = 0 to purchase a flat lifetime annuity at a level aY0

≥ 0 with a price
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markup ξ ≥ 0. Let a(t, i) = E
[ ∫ T

t
e−r(s−t)exp

{
−
∫ s

t
µ(u)du

}
ds

∣∣∣∣Yt = i
]

be the expected value of a one-dollar annuity purchased

at time t in state i. Note that for any given annuity, ai , the consumer’s problem can be mapped to the no-annuity case in

part (i) above by setting the constraints equal to:

Wi(0) = W0 − (1 + ξ)ai a(0, i),

∂Wi(t)
∂t

= rWi(t) +mi(t) + ai − ci(t)

Solving for the optimal fixed annuity then becomes a straightforward static optimization problem:

a∗i = argmax
ai

V (0,Wi(0), ai , i)

The optimal annuity must satisfy the necessary first-order condition:

∂V (0,Wi(0), ai , i)
∂ai

=
∂V (0,Wi(0), ai , i)

∂W (0)
(1 + ξ)a(0, i) (A.4)

Because the consumer may favor a non-flat optimal consumption profile, the optimal level of annuitization is likely to be

partial even if the markup ξ is equal to zero. However, full annuitization is optimal when ξ = 0, r = ρ, and quality of life

and income are constant.1

The value of an annuity depends on a consumer’s expected future survival. Life-extension affects the value and cost of

a given annuity, and may also affect the level of the optimal annuity. Thus, the effect of the mortality rate perturbation on

the marginal utility of life-extension is:

∂V
(
0,W ε

i (0), aεi , i
)

∂ε

∣∣∣∣∣∣∣
ε=0

= (A.2) +
∂V
∂ai

∂aεi (0)
∂ε

∣∣∣∣∣∣
ε=0

+
∂V

∂Wi(0)
∂W ε

i (0)
∂ε

∣∣∣∣∣∣
ε=0

where the first term on the right-hand side is equal to equation (A.2) derived in part (i) above for the case with life-cycle

earnings but no annuity. Note that:

∂W ε
i (0)
∂ε

∣∣∣∣∣∣
ε=0

=
∂
∂ε

−(1 + ξ)aεi

∫ T

0
S̃ε(i, t)e−rt

1 +
∑
j>i

(
λij (t)− εδij (t)

)
a(t, j)

dt


= −(1 + ξ)
∂aεi
∂ε

∣∣∣∣∣∣
ε=0

a(0, i)− (1 + ξ)ai

∫ T

0
e−rtS̃(i, t)



∫ t

0

∑
j>i

δij (s)ds


1 +

∑
j>i

λij (t)a(t, j)

−∑
j>i

δij (t)a(t, j)

dt
Combining this with the first-order condition (A.4) implies that:

∂V
∂ai

∂aεi (0)
∂ε

∣∣∣∣∣∣
ε=0

+
∂V

∂Wi(0)
∂W ε

i (0)
∂ε

∣∣∣∣∣∣
ε=0

= − ∂V
∂Wi(0)

(1+ξ)ai

∫ T

0
e−rtS̃(i, t)



∫ t

0

∑
j>i

δij (s)ds


1 +

∑
j>i

λij (t)a(t, j)

−∑
j>i

δij (t)a(t, j)

 dt
1Even in the case of full annuitization, the first-order condition (A.4) holds with strict equality since the consumer is

indifferent between an increase in the annuity level or a proportionate increase in baseline wealth.

A-5



Thus the marginal utility of life-extension is equal to:

∂V
∂ε

∣∣∣∣∣
ε=0

=
∫ T

0
e−ρtS̃(i, t)



∫ t

0

∑
j>i

δij (s)ds


u(ci(t),qi(t)) +

∑
j>i

λij (t)V (t,Wi(t), ai , j)

−∑
j>i

δij (t)V (t,Wi(t), ai , j)

 dt
− ∂V
∂Wi(0)

(1 + ξ)ai

∫ T

0
e−rtS̃(i, t)



∫ t

0

∑
j>i

δij (s)ds


1 +

∑
j>i

λij (t)a(t, j)

−∑
j>i

δij (t)a(t, j)

 dt
The marginal utility of wealth, ∂V /∂Wi(0), is equal to uc(ci(0),qi(0)) when the solution is interior. Dividing by the marginal

utility of wealth and rearranging yields the marginal value of life-extension:

∂V /∂ε
∂V /∂W

∣∣∣∣∣
ε=0

=
∫ T

0
S̃(i, t)



∫ t

0

∑
j>i

δij (s)ds



e−ρtu(ci(t),qi(t)) +

∑
j>i λij (t)V (t,Wi(t), ai , j)

uc(ci(0),qi(0))

− (1 + ξ)ai e
−rt

1 +
∑
j>i

λij (t)a(t, j)




−
∑
j>i

δij (t)
(
V (t,Wi(t), ai , j)
uc(ci(0),qi(0))

− (1 + ξ)aie
−rta(t, j)

)dt
Choosing the Dirac delta function for δi,n+1(t) yields:

V SL(i) =
V (0,Wi(0), ai , i)
uc(ci(0),qi(0))

− (1 + ξ)ai

∫ T

0
S̃(i, t)e−rt

1 +
∑
j>i

λij (s)a(t, j)

dt
=
V (0,Wi(0), ai , i)
uc(ci(0),qi(0))

− (1 + ξ)aia(0, i)

■
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